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ABSTRACT

Dynamical systems that are reversible in the sense of Moser are

investigated and bifurcation of trajectories connecting saddle points from

stationary solutions is studied. As an application, reaction-diffusion models

in one space dimension are considered. These equations are studied in the

neighborhood of a point, where the set of spatially homogeneous .sol.ttLis

displays a Hopf bifurcation. It is shown that from such a point branches of

solutions bifurcate, which can be described as waves travelling to or from a

center. These waves may be exponentially damped at infinity or not. They can

be regarded as one-dimensional analogues of "target patterns" or "spiral

waves" .
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SIGNIFICANCE AND EXPLANATION

In experiments on reaction-diffusion systems, e .g. the famous Belousov-

Zhabotinskii reaction, patterns of rotating spirals or propagating concentric

rings are observed. These patterns have found considerable theoretical

interest in the recent literature. In this paper we give a rigorous proof for

the existence of certain solutions to reaction-diffusion equations. The

qualitative features of these solutions are such that they may be regarded as

one-dimensional analogues of these patterns. Mathematically, the problem is a

degenerate case for bifurcation leading to trajectories connecting critical

points in a reversible system.
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BIFURCATION OF SINGULAR SOLUTIONS IN REVERSIBLE SYSTEMS

AND APPLICATIONS TO REACTION-DIFFUSION EQUATIONS

M. Renardy

0 INTRODUCTION

Recently Kirchgassner and scheurle [19], [20] have constructed bounded

nonperiodic solutions (which they call "singular") of reversible systems as

"envelopes" of periodic solutions with infinitely increasing periods. Under

appropriate hypotheses, they prove that there are branches of such solutions

* bifurcating from a stationary solution. In [33] I have developed a different

approach to these solutions. In particular, it turned out that the singular

solutions are in fact trajectories connecting saddle points. The present

paper presents some extensions to the results of [33]. A global bifurcation

theorem for singular solutions is shown. Moreover, applications to reaction-

diffusion models are discussed. We obtain solutions, which may be considered

*one-dimensional analogues of the patterns of concentric rings or spiral waves

observed e.g. in the Belousov-Zhaotinskii reaction.

In order to keep the paper essentially self-contained, the main results

* of [33] are reviewed here, the reader will, however, be referred to (33] for

some of the proofs. The paper is organized in two parts: In the first (1§ I-

5) we deal with reversible systems on an "abstract" level, in the second part

*1 (§1 6,7) we consider reaction-diffusion equations.

We study a differential equation of the form

(' du - A(Ii)u + B(Iu)

Here P is a real parameter, and u lies in a Banach space Y. A(P) is a

linear operator in Y composed of a bounded part depending smoothly on 0

and an (in general unbounded) operator A0 satisfying certain semigroup

conditions, and B is a smooth bounded operator from R x Y into Y

satisfying IB(U,u)l O(lul 2 ). Our principal assumption is that (0.1) is

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
Deutsche Fbrschungsgemeinschaft. A major part of this research was done at
Inst. f. theor. Physik, Univ. Stuttgart, and was supported in part by the
Volkswagen Foundation.



reversible in the sense of Moser [26]. This means that there is a linear

operator R e t(Y) such that R2 = id, A(P)R - -RA(M), and

B(IJ,Ru) - -RB(J,u). We assume that for V < 0 the spectrum of A(M) has

positive distance from the imaginary axis, whereas at P - 0 a pair of

eigenvalues passes through 0 and becomes imaginary for P > 0 . Under these

conditions, KirchgFssner and Scheurle [19] ,[20] have proved that, for each

Ii in a positive neighborhood of 0, there exists a one-parameter family of

periodic orbits centered at the origin. They also prove that, under certain

additional assumptions, bounded nonperiodic solutions can be constructed as a

limit of these periodic solutions, the convergence being uniform in bounded

intervals. These limiting solutions are called "singular".

In [33] an alternative approach to these solutions was given. The

existence proof is not based on approximation by periodic orbitst on the

contrary, it is used that singular solutions are isolated in a suitable

function space. Parts of the proof use ideas related to those employed in

[91, [21] and [28]. A bifurcation parameter e is introduced, leading to a

reduced equation for C = 0. This reduced equation is not the linearization

of (0.1), but a nonlinear approximation of "Ginzburg-Landau" type [12]. For

the reduced problem, singular solutions can be given explicitly. A refined

version of the implicit function theorem is used to prove the existence of

singular solutions for E 0 0. whereas the nature of the singular solutions

remains an open problem in the work of Kirchgissner and Scheurle, it becomes

clear here that they are in fact trajectories connecting saddle points.

Under generic assumptions we have to distinguish two different cases,

which can be shown to correspond to the two different reversibility conditions

in (19]. In the first case a two-sided branch of stationary solutions emerges

from the point u 0, 0 - 0: For P > 0, the point u - 0, or respectively,
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for U < 0, the bifurcating fixed point are connected to themselves by a

biasymptotic trajectory. Using a different method, this case was also

investigated in [21]. In the second case a one-sided branch of stationary

points bifurcates from 0, i.e. either for ti > 0 or for 11 < 0 we have two

new fixed points. It depends on the direction of the bifurcation whether

these are saddle points or not. If they are, they are connected to each other

by two trajectories. In both cases one of the solutions represented by the

singular trajectory is symmetric w.r. to R, i.e. Ru(-x) = u(x). These

results are reviewed in §§ 1-4 of this paper. In § 5 we use degree theory to

extend this local bifurcation theorem to a global result. It is shown that

branches of singular solution can terminate only by one of the two following

mechanisms:

1. The asymptotic stationary point loses the property of being a

saddle.

2. A suitably defined norm of the solutions tends to infinity.

There are numerous examples for the occurence of singular solutions in

physical problems. The research of Kirchgissner and Scheurle was motivated

by the study of stationary solutions to the Benard and Taylor problems.

Further examples occur in classical mechanics, in the theory of water waves

[91, in the theory of Josephson junctions and in nonlinear optics (3].

In the second part of this paper we consider applications to reaction-

diffusion equations in one space dimension. These equations have the form

(0.2) Diui = fi(1,u 1 ,...,un) + Ui

The stands for the derivative with respect to the space variable x, and

the * stands for the derivative with respect to time t. The fi are

assumed to be smooth functions. We restrict our attention to solutions

periodic in time. Putting u1  = vi, (0.2) can be rewritten as a system,
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which is reversible under either of the mappings

R (ui'vi  (Ui,-Vi ) or R : (ui(t),vi(t)) (Ui(t+4), vi(t+ ))

(T denotes the temporal period). We study solutions of (0 .2) in the

neighborhood of a point where the system

(0.3) fi(I,ui,..0,un) + u, - 0

undergoes a Hopf bifurcation (this has been shown to occur e.g. for the

Brusselator [1], [12] and the Belousov-Zhabotinskii reaction [6], [13), [17],

(18], (27), (311). For (0.2) this leads to a situation, which has analogies

to the one considered in the first part of the paper, but is more complicatedl

the eigenvalue 0 occuring in the linearized problem for I - 0 now has the

algebraic multiplicity 4 and the geometric multiplicity 2 rather than 2

and 1 . Again we introduce a bifurcation parameter C, and, taking into

account only the terms of lowest order, we obtain a reduced equation.

This reduced equation turns out to be the simplest case of a

")-w-system". A-w-systems have been introduced as one theoretical concept to

explain patterns of concentric rings ("target patterns") or rotating spirals

("spiral waves") occuring in chemical reactions (see e.g. (5], (8], (101,

[11], (15], (22], (23], [29], [34], (35], (361, (38]). Solutions of

X-W-systems were investigated in particular by Kopell and Howard (15], (22],

[23] in one space dimension and by Greenberg [101, [11] in two space

dimensions.

Our analysis focusses on two specific solutions, which we can give

explicitly for £ = 0. Again a generalized implicit function theorem is used

to prove persistence of solutions with the same qualitative properties for

£ 0. The first type of solutions are temporally periodic, symmetric with

respect to R, and approach a constant as x * ±m, asymptotically they can for

large lxl be described as exponentially damped waves propogating in opposite
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directions for x positive and x negative. The solutions of the seaond

' type are temporally periodic, symmetric with respect to R, in the limit

x + t" they approach periodic wave trains, and the directions of propogation

are again opposite.

The first kind of solutions can be regarded as a one-dimensional analogue

of target patterns, whereas the second kind are one dimensional spiral waves

[38]. In the case e - 0, the latter solutions coincide with one of the

solutions, for which existence was proved by Kopell and Howard in [23]. For

C 0 0 these solutions were discussed on a formal level by Cohen,

Hoppenstaedt and Miura [4].

It remains an open question in general whether the solutions under study

here can be stable or not. In chapter 7 we investigate the stability of the

solutions of the first type for a special range of parameter values and find

they are unstable.

a:
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I* BIFURCATION OF SINGULAR SOLUTIONS IN REVERSIBLE SYSTEMS

1. Formulation of the problem

we consider a differential equation

(1.. u- - A(J)u + B(P,u),
dx

where P is a real parameter and u is in a Banach space Y. VWe assumet

(i) A(P) is of the form A(P) - A0 + Al(0), where A0 " A(O) is a

closed, densely defined linear operator in Y and A (i) e C(Y) is a

C - function of P.

J2
(ii) B : R x Y + Y is of class C and lB(,u)I = 0(nul2 ) as u + 0.

(iii) Equation (1.1) is reversible in the sense of Moser [26], i.e. there

exists a linear isometry R e x(Y) such that

R2  id, A(M)R - -RA(P) and B(P,Ru) - -RB(I',u).

(iv) A0 has an isolated algebraically two-fold but geometrically simple

eigenvalue 0.

Let N denote the generalized nullspace of A0 , and M the

complementary subspace of Y which is invariant under A0 . It easily

follows from (iii) that M and N are invariant under R. Moreover,

it is not difficult to prove that RI has the simple eigenvalues +1
N

and -1.

(v) M has a decomposition M = M+ + M, where M+ and M are

invariant under A0 , M-= RM+ Moreover, -A01 + generates a strongly
N

continuous semigroup of negative type, i.e., for x > 0 we have

le-AoX1 4 Ce- x with positive constants C and Y. It is a simple

consequence that on M we have Re+AoX 1 Ce

We write u - (v,w,z), where v and w denote the components in N and

z e M. without restricting generality we may assume that R takes (v,w)

to (v,-w). Equation (1.1) is then rewritten as follows:
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VI = a0u)w + Y(1I)vw + a(1j)w 3+ wb (U)z + 0cv lVI W +

lwf 3 IV + lzl( IIJI + lvi + EZI + iwi2

(1.2)
W, (00')v + SOu)v 2 + C(Ij)W 2 + 0(IvI W 2 V+ Z

(lvi + liW + AZI +

Z' A(I)z + w2 (1) + O(IzU(lvI + liw + NOE) +1vl 2 + lvi liW

+ iwi 3 + I1l(IvI + lIO),

where a~p), O(P), S(11), C(11), and C(11) are real numbers,

a(1') e M, b (m) e m (the dual of M.). and A(P) is a linear operator in

M. We shall distinguish the following generic cases:

Case 1:

80 0 (0) =0, 008= = (I) p 0, so = S(0) #' 0.

Then we put Pi = ±E2 and introduce the scaling

V C2 , +C3 Wz+C3 z, x E
v, w+ £w, + £z, * . We obtain:

v = a w + O(lel)
02

(1.3) W, = ±6 v + 6 v 2+ Oclel)
1

Cz= A(0)z + 0(ICI)

Case 2:

ao = a90) =0, a1 = ~ '30) Ij= * 01 0(0) *0, O(0)c(O) -YOKO~() =0,

where M() () + b (0)A(0) aCO).

- 2-( -1we then put z = z-w 0C) aCO) and introduce the scaling

v+ V, w + £w, z + £ zx+-. we obtain

v = ta w + Y 0vw + 0 w + O(IZI + I)

(1.4) W, =0v + Ow 2+ O(I£),

=z A(0)z + 0(lcf.
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2. Singular solutions for C - 0

We are now going to discuss the existence of trajectories connecting

saddle points for C - 0. Since A(0) is nonsingular, C - 0 immediately

yields z = 0 both for (1.3) and (1.4), and we are left with a two dimensional

problem in either case. We start with the easier case 1.

Case 1:

We assume a0 > 0, 8 < 0, which can easily be achieved by replacing

U and v by -P and/or -v if necessary. For C = 0 (1.3) reads

v = W,

2(2.1) w = *81v +av

which is a Hamiltonian system, i.e. the Hamiltonian

2 1 2 260 3H~ W --v -- v
a0 0

is constant along trajectories. This implies the following

Proposition 2.1:

If the plus sign is chosen in (2.1) (corresponding to U > 0), then the

fixed point v - / O  w = 0 is a saddle point, which is connected to
1 0'1

itself by a separatix, if the minus sign is chosen, the same holds for the

fixed point 0.

Case 2:

(1.4) reads for E = 0:

(2.2)*aw + Y0VW + a0 w
3

(2,22

-0 + 2

Again we may assume 80 > 0, aI < 0. Stationary solutions of (2.2) are given

by

, 2 o/
v = w = 0 or v = 14O /(sO - YOO) w = + a I a 0 P 0 a0 00 0 00 0

i I ' I ""T " " ......... -8-



Hence nontrivial fixed points exist for Ii > 0 (i.e. for the choice of the

+ sign in (2.2)) if

(2.3) A0 -YO CO > 0.

A simple calculation shows that in this case the nontrivial fixed points

are saddle points. Separatrices connecting the two nontrivial fixed points

are found as follows:

We look for invariant parabolae of the form v = aw2 + b. This curve is

invariant under the flow of the differential equation (2.2) iff:

v 2aww * If (2.2) is inserted into this equation, a short calculation

shows that there are in fact two invariant parabolae for (2.2), namely, we get

1 Jl -Y 2
Y 1 - + 20 0

2 0-0 2 0 0 0
280

- 0 W 1 - ) 2b= -2 Y 0 Fill( Y0 -0 ) + 20 80

It can be checked that the nontrivial fixed points are in fact on these

parabolae. We leave the calculations to the reader. That the two parabolae

are the only trajectories connecting the two saddle points follows from the

uniqueness of stable and unstable manifolds, for which we refer to [301.

Altogether we find

Proposition 2.2:

If (2.3) is satisfied and the + sign is chosen in (2.2) (which

corresponds to P > 0 ), then there exist two saddle points, which are

connected to each other by two trajectories. The solutions of (2.1) and (2.2)
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are illustrated byj the following diagrams:

(2.1), + sign

a-

Fig. 2.1

2.)- sign

Fig. 2.2



(2.2), +sign, (2.3) holds

Fig. 2.3



3. The linearization at the singular solutions

All the trajectories connecting saddle points which we have found in § 2

are symmetric with respect to the w-axis. This means that among the one-

parameter family of solutions represented by such a trajectory there is one

solution y0(X) = (v0 (x), w0 (x)) satisfying Ry0 (x) = y0 (-x). We denote the

linearization of (2.1) resp. (2.2) at y0 (x) by
7i

y = C0(x)y

Using the reversibility and the fact that Ry0 (x) - y0 (-x) one finds:

C0 (-x)R = -RC0 (x). We shall prove

Theorem 3.1

For each f(x) = (f1 (x),f 2 (x)) e Fm - (f e Cb(R,R2 )Rf(x) = -f(x),

4 f (k)(x), lim- f (k)(x) exist for Ok4m} there exists one and only one
y(x) = (v(x), w(x)) e Um+i = {y e cm+ R,R2)Ry(x) - y(-x), Pa Y(k)(W,

lm- y ((x) exist for 0(k(m+1} solving the inhomogeneous equation

(3.1) y - C 0(x)y = f

Here Cb(R,R 2 ) denotes the Banach space of all functions R + R2 having m

continuous bounded derivatives.

Proof:

For x + J", y0 (x) converges to a saddle point, and one easily concludes

from the stable manifold theorem [30] that the convergence is exponential.

Repeated differentiation of (2.1) resp. (2.2) then yields the result that all

derivatives of y0  converge to 0 exponentially. This implies the following

properties of C 0x): For x + e, C 0x) converges to the linearization at a

saddle point, i.e. lx COx) exists, and this matrix has one positive and

one negative eigenvalue. Moreover ?/dx'%'C 0 (x)) converges to 0

exponentially for each m > 0. From this we see that it is sufficient to prove

the theorem for m= 0, the rest following from (3.1) by repeated
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differentiation. We rewrite (3.1). in the form

y -Cy -C0 (x)y = f
A A

where C is constant, and 1 C0 (x) = 0. From the fact that C has one

positive and one negative eigenvalue we conclude that for each

2
f e Cb([X,m),R ) the equationbI

(3.2) y - Cy = f
12

has a solution y e Cb (IX,C@),R 2 , which is determined up to one arbitrary

initial condition at x = X. If 1A f(x) exists, then Im y(x) exists as

well. Let P denote a projection of R onto a one-dimensional subepace such

that the prescription of Py(X) determines the solution of (3.2) uniquely.

Then the mapping y + (y - Cy, Py(X)) is an isomorphism from

1 2 x)

=y e c ([x,m),R 2)ItM y(x), i4A y(x) exist) onto

(Fx = f e C ([X,),R2)I i f(x) exists ) x R. Since (3.2) is

autonomous, the norm of this isomorphism and its inverse are independent of

X. On the other hand, the norm of the mapping y + C0(x)y from Ux onto Fx

tends to 0 as X + 1, i.e. for sufficiently large X the mapping

y + (y - Cy- C (x)y, Py(X)) is still an isomorphism from U onto F x R.
0 KX X

That means, given any f e F0 , there exists a bounded solution y to (3.1)

on the interval [X,0), which is determined up to one initial condition at x

= X. Since the initial value problem for (3.1) is uniquely solvable, this

solution on X,O) extends to a solution on [0,0), and we have one free

initial condition at x = 0. This remaining free initial condition is matched

by adding a multiple of the solution y0 (x) of the homogeneous problem. The

requirement y(x) - Ry(-x) implies w(0) - 0, which is achieved by one and

only one choice of the initial condition, since w 0(0) jA 0. This determines

the "half-sided" solution on C0,-) uniquely. Since Rf(x) = -f(-x), we

have further: If y(x) solves (3.1) on (0,0), then Ry(-x) solves (3.1) on

'* -13-



(-,] (use the fact that C 0(-x)R--RC 0 Wx). Hence the half-sided solution

extends to a solution on all of R, and the theorem is proved.

-14-



4. Existence of singular solutions for C p 0

The goal of this paragraph is to prove that there exists a branch of

singular solutions in a neighborhood of C = 0 . For this let y0 (x) be as

in § 3 and put h(x) = (v(x),w(x)) - y0 (x). (1.3) or (1.4) then takes the form

h = C0 (x)h + f(e,h,z,x)

(4.1)

Cz A(0)z + g(e,h,z,x)

Here C 0x) is as in § 3 and we have If(e,h,z,x)| Od(J + Izi + NO

Ig(e,h,z,x)| = O(ICI). For each m e N the mapping (e,h,z) + (f(C,h,z,x),

g(c,h,z,x)) is a C -mapping from R x U (Y) to FmoY), where we denote

Ur(Y) = {u e Cb(R,Y)tIli u(k) (x) , _ u(k) (x) exist for 0 4 k ,

Ru(x) = u(-x)} and

in fk) f(k)
F(Y) = {f e Cb(R,Y)Iig f (x), l_ ( (x) exist for 0 4 k 4 m,

Rf(x) = -f(x)}

We write (4.1) as follows:

h C- (dd -Co() f(:,h,z,x) 0
dx 0

(4.2)

z d -( ) -1
z - (C - g(e,h,z,x) = 0

We wish to apply an implicit function argument to establish the existence of
-- d

solutions in U (Y) for C p6 0. A problem is caused by the fact that C

is a relatively unbounded perturbation to A(O). It is, however, not

_. difficult to show the following (the details are in [33]):

Lemma 4.1:
d *()'z r -1 M)it

(i) The mapping (6,z) 1+ (C - AO)) z from R x F CM) into

U (M) is continuous near C = 0 (M as defined in (iv) of § 1)

d ,01-1
(ii) The operator norm of (C - A()) F (M) * U (M) is

uniformly bounded in a neighborhood of C - 0

-15-



d - O)'zfr-1x M)it
(iii) The mapping (Cz) (C ACO)) z from R X P W into

dx A m
kU mk(N) is of class C

These properties permit the use of the following abstract theorems which

we proved in [32], (33].

Theorem 4.2

Let X,Y and Z be Banach spaces, U a neighborhood of (0,0) in

X x Y, and F: U + Z a mapping having the following properties:

(i) F(0,0) - 0.

(ii) F is continuous.

(iii) F is continuously differentiable with respect to y for each

fixed x.

(iv) D P(0,0): Y + Z is an isomorphism.
y

(v) DyF is continuous at the point (0,0).

Then the equation F(x,y) - 0 has a unique continuous resolution y - f(x)

in some neighborhood of (0,0).

Theorem 4.3

Let Y(k) reap. Z W (k - 0,1,... N) be two hierarchies of Banach spaces

such that Y(k)cy(k+) (k) Z(k+) the imbeddings being continuous. Let

X be a finite dimensional Banach space and F a mapping from a

neighborhood U of 0 in X x Y(N) into Z(N) having the following

propertiest

(M) F(U 0 (Xx (k))) C Z W k - 0,1,... N

(ii) For each fixed k, F :- FU (k) satisfies the conditions
k U r)(X xY

of theorem 4.2, when it is considered as a mapping from X x Y into

(k)
z For x fixed, Fk(x,.) is a smooth (i.e. sufficiently often

differentiable) mapping.

(iii) F: X x y(k) * z(k+m) is of class Cm  for each k - 0, 1,..., N

-16- '



and m N - k.

(iv) The mapping (x,y,u1,...,u + z D i j F(xy)(ul...,u ) is a,..,k )  W z Y D iy F (kl~ i,

continuous mapping from x x y k)x (yk) into L (Xyk+i)

Then the following holds:
The solution y - f(x) e Y (0) existing by theorem 4.2 is a Cm-function of

x in some neighborhood V of 0, if y is regarded as an element of
m

(m)
Y

Identifying X with R, Y and Z(k) with U Mk(Y), we get from

these theorems.

Theorem 4.4:

For each m e N there exists a neighborhood V(M) of (0,0) e R x U (Y)
m

such that in V equation (4.2) has a unique resolution

* h = h(C), z = z(E) . If this solution is considered lying in U k(Y), then
k

in some neighborhood of e = 0, it is a C k-function of C

Remarks

1. In order to carry out the iteration procedure in the proof of the implicit

function theorem, equations of type (3.1) have to be solved. Although the

explicit solution of (3.1) has not been employed in the proofs, it can

easily be obtained modulo integrations, since one integral of the

homogeneous equation is known.

2. In the case 1 of 1 1,2 there are singular solutions approaching 0 for

x + 10 . Using the stable manifold theorem it can be shown that the

convergence is exponential, and the singular solutions are therefore in

Lp  for each p A I . But do they bifurcate in LP? To answer this

question, we must see how the scaling introduced in § I affects the Lp -

2
norm. In the generic case considered here u has been scaled by c

adxy -1 €2- 1/p
and x by , which gives a factor of £ in the LP-norm.

l "7i



II

Therefore we have a bifurcation in the space LP  for each p 1 1. This

need no longer be true if degeneracies occur and different scaling factors

must be used. Kfpper and Riemer [24] have considered the example

-u" - lulr f(u) - Au

where f(O) < 0 and r < 1.

Our method described above applies to this example with the scaling

• € 2/(r-1 ) -1
, u +  u, x + C x . In the LP-norm this gives a factor of

S2/Cr-1)-1/p * This exponent is greater than zero if r < 2p + 1. This

agrees with the result obtained in (24] for the case p = 2.

- nu n I I I I -.! , :. 4



5.* Global existence of singular solutions

in the preceding chapters we have proved the existence of branches of

singular solutions in the neighborhood of some bifurcation point. This

chapter deals with the problem, how far these branches can be continued. The

main tool of the analysis will be the theory of degrees of mappings. Under

appropriate conditions, a degree can be associated with our singular solutions

in a quite similar way as with solutions representing travelling waves [39].

Since the definition of a degree requires a compactness assumption, we

impose the following condition in addition to Mi - (v) of It1

(vi) -A 0 J and A 0 1M, respectively, generate analytic aemigroups and
MM

have compact resolvents.

As a consequence, fractional powers (-A a and A aare defined as0 0

operators in M and M+, respectively. We say briefly that y e Y is on

DCA 3), if its M --component is in DC-A a and its M +-component is in D(A )a
0 0 0

It follows from the compactness of the resolvent that, for any

a
0 < a 4 1, D(A 0) is compactly embedded in Y.

The result we want to show is that branches of solutions can be continued

unless some norm of the solution approaches infinity. Obviously, this can

only be expected, if the nonlinear terms in the equation remain bounded on

bounded sets. We therefore assume

(vii) The nonlinear operator B maps bounded sets into bounded sets.

in our exposition we focus on the case 1 of §1. Again we assume

a0 > 0, 0 0. in this case we have proved that a branch of trajectories

connecting the saddle point 0 to itself exists for Vs < 0.

We shall be concerned with solutions lying in the following spaces.

Definition 5.1:

Let Y be the samte Danach space as in 1.* Then
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Xn (Y) - {y(x) e c n(K,Y)tRy(x) - y(-x), sup e UtxIjy(k)(x)j < for k = 0,1,...n)a NM

y denotes the kth derivative of y.

In §1 1-4 we have shown that, for e small, (1.3) has two solutions in

-n (Y) , namely 0 and the singular solution. Both are isolated, and the
a

linearization of (1.3) at either solution is nondegenerate.

For convenience, we let y denote (v,w,z), L(C) the linearization of

the right hand side at 0, N(C,y) the nonlinear part of the right hand side

of (1.3), and 0. the mapping (v,w,ez). The (1.3) can be rewritten in the

form

L(5.1) y x - L -1pN(C :,y)
dx e

-* Let r = [CIC2] denote an interval with the following properties:
1 2

1. C2 > C1> 0, 1 small

2. For each e e r, the solution 0 of equation (1.3) is a saddle point,

and the real parts of the eigenvalues of ( 1L(C) have a positive

distance 6 (uniformly in C ) from the strip

{e 6 Cl -0 4 Re a )ci

The crucial property for a global bifurcation result is the following

Propositon 5.1
n

Let D be any ball in Xn(Y). Then the right hand side of equation

(5.1) represents a completely continuous mapping from r x D into Xn (Y)
a

Proof:

It follows from assumption (vii) that N is continuous and bounded into
n

x2(Y) o Moreover, our assumptions on A and r imply that
20 0

__ - IL(C)) -  is a bounded continuous mapping from
dx e
r x n(Y) into n+0 (D(A0)) for some ,r > 0 and C < min (2,0+6). The

2C C 0
rest follows from the compactness of the embedding D(A ) + Y and the Arzela-0
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Ascoli theorem.

Degree theory now gives the following result (cf. [37]):

Theorem 5.2:

The branch of singular solutions to (I .3) provided by theorem 4.4 must

either leave r or the norms of the solutions are unbounded in X (Y).

Remarks:

n
1. The reader is cautioned that unboundedness in X (Y) does not mean

unboundedness in the sup-norm. In fact, branches of singular solutions

can terminate by a mechanism like the one indicated in the following

sequence of diagrams.

(a) (b)# (b) (c)

44

For any 0 > 0, the norm in Xn  tends to when passing from situation

(a) to situation (b), and the branch of solutions connecting 0 to itself

terminates its existence. Similar phenomena must be expected, when singular

solutions come close to an invariant set other than a stationary point.
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2. The above theorem does not exclude the possibility that a branch goes back

to 6 - 0. However, branches can not return to the point they bifurcated

from, as one can see from a local uniqueness result. Namely, there exists

a center manifold z = g(v,w,A) for equation (1.1), and for U near 0

all uniformly small zolutions must lie on the center manifold. This

follows from the following argument%

If we put z - z - g(v,w,p), we obtain for z a differential

equation having the following form

A(0)z + O((MIi + Ivi + IwI)) Iz,) + 0(,z 2

For small IvI, Mwi, PI) , the only small solution of this is z = 0, as

follows f.rom the implicit function theorem. Prom this and elementary

considerations about two-dimensional flows it follows that near 0 = 0

the saddle point 0 and the singular solution provided by theorem 4.4 are

the only small solutions in X n

For the case 2 of § 1, analogous considerations are possible, but now

L(C) should be replaced by an appropriate operator L(E,x) which

converges to the linearization at the limiting fixed points for x '

-22
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II. APPLICATIONS TO REACTION-DIFFUSION MDELS

6. Oscillating sina,!ar solutions connected with Hopf bifurcations

We consider a general chemical reaction model given by an equation

2au _2u
(6.1) =F( ,u) + D -a

3x2
nwhere u e Rn , P e R. F is a smooth nonlinear function. D is a diagonal

matrix, which is strictly positive definite. We assume

i) For P in some neighborhood of 0, there exists a

solution u = u0(P) e Rn to the equation F(U,u) = 0 , and u000

is a C -function of P

(ii) The matrix D uF(0,u 0(0)) has the algebraically simple imaginary

eigenvalues jiw0 , the rest of the spectrum lies in the left half

plane.

(iii) Let A(M) denote the branch of eigenvalues of DF(P,u0( 0)),
d

which goes through iW at P = 0 . Then - Re X(V)jP=0 *0.
0 di 1=

(iv) For each Y > 0, the spectrum of D F(0,u (0)) - DY lies in the
u 0

left half plane.

It is well known [14] that conditions (i)-(iii) imply the existence of a

branch of x-independent time-periodic solutions emerging from the bifurcation

point u = u (0), P = 0. The conditions (i)-(iv) have been verified in quite
0

a few reaction diffusion models, e.g. the "Brusselator" [1], [12] and the

Field-Noyes model of the B-Z reaction [6], [131, [171, [18], [271, [31].

In this chapter we shall study time-periodic space-dependent solutions of

equations (6.1). We rewrite this equation in the form

(6.2) 1" = D - F(F,u))

The factor w > 0 has been introduced in order to normalize the period to
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1

1

2W. After appropriate scaling of x we may drop - on t"e left side.

Moreover, we write (6.2) as a first order system.

(6.3)

V' F(i,u))

Let now a( ) denote the space of all 2-periodic functions y: R + Rn

for which lyl - j (Iki* + 1) ly(k)I < -, where the y W are the Fourier
keZ (k)eikt

coefficients: y(t) = y . We shall seek solutions to (6.3) in the
kez

space - f(u,v)iu e I (Rn) , v e £I (Rn)}, where m is an arbitrary
m M_

positive integer. Clearly, the mapping (t,W,(u,v)) H (0,-D W P01I,u)) is

smooth from R x (R \ {0}) x Y into Y., moreover, the operator
au '

(uv) '+ (v,D 3-) is densely defined in Y and closed. Equation (6.3) is

reversible under both mappings R : (u,v) (u,-v) and

R : (u(t),v(t)) * (u(t+W),-v(t+11)).

We now discuss the spectrum of the linearization of the right side of

(6.3) at the point W -" 0 U = 0, u -u 0(0). The relevant properties of

this spectrum are described by the following lemma.

Lemma 6.1:

Assume (i)-(iv) and (v) stated below hold. Then the operator
-1 au -1

A: (u,v) F+ (v,D y- (DW0 ) DuF(O,u0 (P))u) has the isolated

algebraically four-fold and geometrically two-fold eigenvalue 0. Let N

denote the generalized nullspace and M a complementary invariant subspace.

Then AlM satisfies condition (v) of I 1 (even (vi) of § 5, but we shall not

use this.)

Proof:

We first note that A acts Fourier-componentwise, i.e. we have

A(I(u (k ) ,v (k ) )e iA t  A A(k ) (u (k ) ,v (k) )e ikt
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where

D DA - (DW0 -D F(O,u 0 (0)) 0

(k)Thus the eigenvalues of A are the square roots of the eigenvalues of the

matrix

D-oik - (D()-IDuFIO,u 0 (0))
(k)

and A -k  has an imaginary eigenvalue iff this matrix has a negative real

eigenvalue. Let now be

(D Iik - (DW0 )-DF(Opu 0 (O)))y -Yy Y ) 0

This yields

D u(,u 0(0))y - LYDy = ikwoy

For Y * 0 this is impossible by condition (iv), and Y - 0 yields k = ±1,

since wi0 are the only imaginary eigenvalues of D uF(0,u 0(0)). We see

therefore that A (k ) has no imaginary eigenvalues for k * +1, and the only

imaginary eigenvalue for k - ±1 is equal to 0. To prove the statement

concerning the multiplicity, it must be shown that X = 0 is an algebraically

simple eigenvalue of
J.,.: -1i D0 -1u(

D i - (DW 0 D (0,u 0(0))

It is easy to see that the nullspace of this matrix is spanned by the

eigenvector of D uF(O,u 0(0)) to the eigenvalue i(%, whence the eigenvalue

* 0 is geometrically simple. Assume now that

D F(0,u 0(0))y - iwOy

and

y - (D -i (DW 0) D F(,u0(0))z

This yields

WoDy - (iW o - DuF(0,u(0)))z
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We shall therefore assume

(v) With y denoting the elgenvector of D uF(O,u 0(0)) corresponding to the

eigenvalue iW0 , Dy is not in the range of iW0 - D UF(0,u0(0)).

Clearly (v) is a generic condition, which guarantees that the eigenvalue is

algebraically simple (in particular, (v) follows from (ii) if 0 is the

identity matrix).

We must now verify that the spectrum of A is actually given by the

eigenvalues of the A M and that (v) of I I holds. This will be a

consequence of the following:

There exists an isomorphism T of Ym acting Fourier componentwise:

T I (u (k) ,v (k )e ikt - T(k (u (k ,v (k ) )e ik t

kez keZ

such that for large Ik!, let us say for IkI > k0  the matrix

(T (k ) )- A (k )T (k ) consists of a diagonal part and a rest term which has a

norm of the order of magnitude I k I2 Namely, put for I k/  k0

- (k)

This yields

I1 -- '-

T(k)-1 V )

-26-
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-l + P I " ) O (Ik ' I
((kl) -1 k) T (k) =

(T ) V~ k I - /2)/
00o) 1 + O(k- 2)

i.e. (T(k))-IA(k)T (k )  is the sum of diagonal matrix and a remainder term

which has an operator norm of the order of magnitude Pk 12 (recall the

definition of the norm in Y ).m

It is now a simple consequence of the Hille-Yosida theorem [25] that

property (v) of § 1 holds for the diagonal part, since the necessary resolvent

estimates are in this case trivial. A perturbation argument shows that the

same holds for the full operator T IAT, and hence for A. This concludes

the proof of the lemma.

Again y shall denote the eigenvector of D F(O,u 0(0)) corresponding tou 0

the eigenvalue iw0 * We decompose (u,v) as follows

*
ititit - -it

(uv) = (u0 0),0) + a1 (y,O)ei  + (-Y,0)e-  + M 2(0,y)e + a2 (0,y)e + z

;ghere al"ot2 e C and z e M (as defined under lemma 6.1). Equations (6.3)

then assume the form

1

0 2- - -1
a2 = ha 1c1 + a 2ci a CI + C (z,(Il) +2 (-1 - & )a0al +

2 1 01 1 - 2  (0

z= A(O)z + a d + Ciad + d +

Here al, a 2 ,a 3  are complex numbers, Cl, 2 : M x C + C are bilinear

operators and the di  are vectors in M. A(0) denotes Al M. The dots

indicate higher order terms.

Analogously as in § we put z z - A(0)1{01 d + a a + cid I and
1 1 11l2 1 3

introduce the scaling
+i E I + 2 =+2, + :2z, -1 - 1 + £:2a' x'e + -x. We then2 1 2 2 0-
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obtain an equation of the following form

a C1
1 a 2

U- -
(6.4) a2 a 1 21 +a 2 aIaI + a31 + O( + 11)

Cz =A(O)z + O(ICI)

For C - 0 this reduces to

U - 2-(6.5)~ a I  a Ct a I + a3 WMI + a 2a Ia I
(6.5) *a aa0 a a

Apart from a factor of (b,Dy) (where b* denotes the left handed

eigenvector of D uF(,u0(0)) corresponding to iw 0 , normalized such that

(b*,y) = 1), the coefficients ai, a2 and a 3  are the same which determine

3
the Hopf bifurcation at the order C . It follows from assumption (iii) that

Re is negative. moreover, a3  is equal to iv. W is an unknown

variable, which has to be determined.

Equation (6.5) is the simplest case for a class of equations that have

been called "X-w -systems" [10], [111, [15], [22], [23]. We now try to solve

(6.5) by the ansatz a1 = re , r = C sech kx, 0' - B tanh kx. After some

elementary calculations this leads to the equations

2 B2  +
k -B Re a + W Re a3

2 2 2 -(6.6) - 2k + B C Rea 2

~2Bk±Im a I+ wII a3
23Bk C Im a 2

From the fourth and second equation of (6.6) we find

2 2
3Bk Re a2 + (2k - B ) Im a2 - 0

which can be solved by B Ak, where (provided Im a 2  0)
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m a2  V 2 2

-2 Im a2
-2 2

According to the fourth equation of (6.6), X must have the same sign as

Im a2, which is achieved by choosing the minus sign in the numerator.

We now insert B )k into the first and third equation of (6.6), thus

obtaining

k 2(1 - A2) t Re al + 0) Re a 3

-2k 2  1 a + W Im a
2 X2) +A el±R a n D a R a,>k2  -2 a3 + 2 3 Re a13 +(Re a IM a3 - im a1 Re a3

The right side of this last equation is not zero, according to what we have

said about a and a3  above. We can resolve the equations with respect

to k and (d if the following holds

(vi) (1 - X2 ) Im a3 + 2X Re a3 * 0

If Im a2 = 0, (6.6) can be solved by B = 0, provided that the following

holds:

(vii) If Im a2 = 0, then Re a2  is negative and Im a3 3 0

We find thus

Proposition 6.2

If (vi) or (vii), respectively, are satisfied, then the ansatz

0
re r - C sech kx, ' = B tanh kx leads to a solution al(X) of

(6.6).

Clearly, aU(x) is an even function of x and satisifies

Jim- a 0(x) - 0. Moreover, the asymptotic behaviour of u(x,t) for x +

is described by
-k~x i(t+B~x) +cc

u(x,t) u0 (1) + 2C(Ce e + cc.)

and for x- by
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UNA) u 0 P) 2C Ce k Fx ei(t-BE:X) + C 4c.)u(x,t) u u(lz) + 2ClCe k
0

l ' ~ x  ~.

This means that asymptotically we have exponentially damped waves,

propogating in opposite directions for x .

A second ansatz for a solution of (6.6) is a, = re , r C tanh kx,

PI = B tanh kx. This ansatz leads to

2
-2k a ±Re aI + W Re a3

(6.7) 3kB - t Im a1 + W Im a3

2 _2 ,21 -
2k -B CRe a 2

2
-3kB - C Im a 2

The last two equations can again be solved by the ansatz B = Xk with the

same expression for A as before, this time, however, the plus sign must be

chosen in front of the square root. The first two equations now lead to

-2k = Re a + w Re a3

2A
3k =+Im a + w Ima1 a3

=> k2(-2 Ima - 3ARe a) (Re aIma -Im a Re a)3 3 1 31 3

These equations can be resolved w.r. to k and W if

(vi)' 21m a3 + 3A Re a3 * 0

For Im a 2  0, once can again resolve (6.7) by B = 0, provided that

(vii)' If Im a 2 = 0, then Re a2  is positive (note that this is the

opposite of condition (vii)), and Im a 3 # 0.

We thus find

Proposition 6.3:

If (vi)' or (vii)' respectively are satisfied, then the ansatz
i *

a, = re , r - C tanh kx, 'P' - B tanh kx yields a solution a1 (x) to (6.5)

This solution a is an odd function of x and converges to periodic

wave trains propagating in opposite directions as x + 1'. It agrees with the

solution considered in (381 as a model for one-dimensional spiral waves. In
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that paper, (6.5) and its analogue in two space dimensions are considered for

the special case Re a3 = Im a1 M 0. The solution a(x) is also the simplest

of the solutions the existence of which has been proved in [23] for the case

that Im a2  is small.

We now want to prove that, for sufficiently small C , there exists a

0 *
solution having the same characteristics as a and (I respectively, we

0
begin with the case of Q1. Linearizing (6.4) with respect to a and w, we

obtain the following inhomogeneous problem that has to be discussed

1 2 1

(6.8)

- 02- 0 -0 0
2 + a 111 a2 (1) B1 - 2a2 aI1 a 1 - a3o1 - a " f2

for which we write briefly.

LO8 + (0,-a 3a1 ) . f

As in chapter 3, we want to study properties of this linearized operator as a

mapping from
R x U+1 = (10)ecs RC2 (k) Wx, i_ (8k) (x)

1 2 b XA BiX(x)Rx +i ((B81,8e Cmb  CR'C2 ) (1 k)

exist for Ok~m+1, 1(x) 1(-x), 2(x) - 2 (-x))

into

=~ ~ W( e" k (k)". in ) e1' Cb(RC )Ik$ f~ ' , f x) exist for 04kim,

1 I (x ) = -f1(-x), f2 (x) = f2 (-x)}

The point o e c 2  is a saddle point for (6.4), which has two stable and two
unstable directions. Hence the same arguments as in § 3 show that for any

given f e F and &I e R, we can find a bounded solution B on [0,0), and

two initial conditions at 0 are left arbitrary. These initial conditions

can be matched by adding multiples of the solutions of the homogeneous

0' 0' 0 0
problem, which are given by (aI ,a2 ) and (i , ia2 ). As in § 3, the

solution on [0,-) extends to a solution on all of R, if 2 (0) is zero.

-31-
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As we can verify from (6.6), Re 2 (0) $ 0, but ia (x) vanishes at zero.
&2 (0 '2

This means that by appropriate choice of the elements of the nullspace we can

adjust one initial condition at x = 0, the other must be matched by

appropriate choice of n. In other words, L (as an operator from U3+1

into F m ) has a one dimensional nullspace and the range has codimension one.

We assume

0
(viii) (0,-a3aI) is not in the range of L

Now the same arguments as in 1 4 lead to the result

I Theorem 6.4:

Assume, conditions (i)-(viii) hold. Then for each e in a neighborhood

of 0 there exists w e R for which (6.4) has a one-parameter family of non-

vanishing solutions, which are even in x and approach 0 as x + ±0. The

solutions in this one parameter family differ from each other only by a shift

in the time variable.

Remark:

Condition (viii) is of a "generic" type in the sense that it requires a

certain quantity not to vanish. We have not succeeded in giving an explicit

criterion, when (viii) is true. In one particular case, however, this can

easily be seen, namely, assume that Im a2 = 0, and Im a3 * 0. Then it can

be shown that the functional

m

annihilates the range of L, and clearly, (0,a3 a10) is not in the nullspace

of this functional. It would be interesting to know whether there are

parameter values for which (viii) is false.

For the case of the solution Q,, we have to introduce some new

definitions of spaces, since we are now dealing with solutions approaching a

periodic limit at infinity rather than a constant, and, moreover, the symmetry
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properties are different (a is odd rather than even), which means we shall

have to make use of the reversibility under R rather than under R.

Throughout the following discussion, we shall assume that Im a2 * 0, whence

*2
B * 0 , and it is no restriction to assume B > 0, (otherwise change the

signs of both B and k, which just corresponds to a symmetry

transformation).

Definition 6.5:
m ( n ) entshesaeo

Let a be a positive real number. Then ZX 0 (Rn) denotes the space of

all functions (u(x), v(x)) : R + L (Rn ) x L j(R) such that the following
m M-2

* hold:

1. u and v respectively are C -functions of x e R

2. On (0,0) u and v respectively can be represented as the sum of a 2W-

periodic C -function and the product of e with a function, whose

first X derivatives are continuous and bounded and converge to zero at

a.
infinity.

3. All odd Fourier components of u (with respect to t) are odd functions

of x, all the even Fourier components are even functions of x, and vice

versa for v.

is defined in the same way, but condition 3 is to be taken the other way

round. Clearly there is a natural choice for a norm in Z ,, and we omit a

detailed definition.

We fix a 0 > 0, which is to be chosen sufficiently small, and we look

for solutions to (6.4) in Z , which lie in a neighborhood of

(a(x), a2 (x), z - 0). Since we wish to fix the period of the periodic part

to 2W, a scaling factor Y must be introduced, for - 0 this factor

equals B (i.e. in (6.4) we put x - Yx , but we shall again write x for

x). Again we must Aiscuss the linearization of (6.4) at (ale a2' 0). The

-33-
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third equation causes no problems, as can be seen from the results of § 4 and

the fact that
d (-OXf(x)) e-ax d

(CY -(-)) (e - EYO - A'(0))f(x)

Let us now investigate the linearization of the first two equations of

(6.4) at (a1 (x), 2 (x)I, i.e. we have to discuss the nullspace and

codimension of the operator D:D(D) C. x Zgb

I I ifo I a

(6.9) D(. 1,2) (ra1  + Bo 2, ra* + Bo2T a

* *-* ~*--
-a3WOI - 2a 2 al - a2 (aI) 1  a3fla

m

Let f = (flff 2 ) e z ,O  be given and ocnsider the problem

D(p,r,s) = f. Due to symmetry properties it is again enough to find

solutions 8 on the half-line [0,0), which satisfy 81(0) = 0. We split

S,f and a into the periodic and exponentially decaying parts, denoting

them by indices p and d. The periodic part of (6.9) reads

BOIp -2p ip ip ip2
-- *2

(6.10) BO 2 T a 1 a - a -( ) B - 2a2 a 12p li6p a3lp- a2(lp) lp 2 p i1p

f 2p - 2p + a 3 p f 2p

* .±ixei
Here we have aIp ±Ce e where C is the onstant named so in

proposition 6.3, the + or - sign agrees with the sign of k, and

* = B f (tanh (kx) - 1)dx for k > 0
0

or * - B f (tanh kx + 1)dx for k < 0
0

-34-

I

4i



Proposition 6.6:

The linear operator represented by the left side of (6.10) (in the space

of 2w-periodic C -functions) has a one dimensional nullspace spanned by
*1 *g

(alp" a 2p) and codimension one. The functional annihilating the range is

given by

2w T2ix -2i
(ff) + TM f (a f + af

2 0 2

Proof:

±tix it-~In (6.10) we put = eiei8, thus obtaining

;ix -i*-

(6.11) BB p ±iBlp 2p ,e e flP

1p i 2 p ip

B 2p t iB0 2p a alp a3 lp- a 2 Ip 1p021p 2a 2Ilp I2Bp

2p e ix e-it
= f e ie - l

i :. 2p

In order to find the nullspace, we make the ansatz

p inx -inx
= Pe + Ce ipi

This leads to the equations
- 2B2 - a22p- a2-O

((-n 2 2n)B - a 2c )p a C 20 = 02 2
2 2 % 2 2

((-n ±2n)B a2 C a a2 P 0

Non-trivial solutions exist only if

2 2 2 2 2 s 4
((-n t 2n)B - C )((-n 2 2n)B 2 -aC) aaC

2 2 2 2

<==> (n4 - 4n 2)B4 + 2n2 B 2C 2Re 2a 4iB2 C 2nIm 2a - 0

==> n = 0

From this it is easily seen that the nullspace is one dimensional. Since the

resolvent is compact, so is the codimension. One can easily verify explicitly

that the functional given above annihilates the range.
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We now turn to the discussion of the decaying part. It is determined by

the equations

BOId -8 2d = - ra =. fId
* -~ *2..

(6.12) BO a 8 a W O a (a )21 - 2a a C12d ld 3 id 2 1 Id 2 1 1 d
2- -*_ i2..

-f ra + a k + ) 8 +2a (aa) 8ip f
2d 2d 3 id a2 aidlp 2 lld Ip 2d

Proposition 6.7:

For any given right side (fld' f2d 1' equation (6.12) has a one-

parameter family of solutions on [0,00), which approach zero exponentially as

Proof:

-1 In the limit x +  , all terms on the left of (6.12) that oontain ald

can be regarded as a perturbation (cf. 1 3). Hence it suffices to show the

proposition is true if we drop these terms. Again we substitute e e 8

and we are left with the same left hand side as in (6.11), except that now we

must look for solution decaying to zero at a rate of e rather than for

periodic solutions.

Going through the same steps as we did following (6.11), we obtain the

following equation for the characteristic exponents belonging to (6.10):

AB +4BA - 2A2B2C2Rea + 4B2C A Ima 0
2 2

One eigenvalue is A = 0, and it is simple unless Im a2 - 0, which we have

excluded. Using (6.7), we obtain for the remaining eigenvalues:

A3B 2 + 6AB 2 
- 4Ak 2 1 12kB - 0

kwhich is solved by A - 2;- , leaving the following equation for the remaining
B

eigenvalues

22 2
X B2  2XkB + 6B = 0

k- A 2kB t 2B 2  4

k 2B2

The eigenvalue 2- is negative, and the last two eigenvalues have positive
B
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real parts. This yields the proposition.

Solutions on [0,0) yield solutions to (6.12) on all of R if

8I(0) = 0. On [0,0) we have two linearly independent solutions of the

homogeneous problem, given by (i ,im2 1 and (a a ). Since CI (0) 0,
~~1 2 1 2

but a1 (0) - 0, addition of a solution of the homogeneous problem can only be

used to match one of the two initial oonditions. Hence we see:

The operator D = D == has a one-dimensional nullspace and its range

has codimension 2 (one coming from the condition M (J) = 0 and one from the

codimension for the periodic part). Thus D is onto iff

(viii)' The vectors (CL ,a 2 ) and (0,-a 3C 1 ) span a complement to the range

of D.

We do not know how to check (viii)' explicitly, but one can expect it to hold

for almost all parameter values.

Theorem 6.8:

Suppose (i)-(v),(vi)',(viii)' hold and Im a2 0. Then in a

neighborhood of E - 0 there exist y(E), O(e), for which (6.4) (with x

scaled by Y) has a one-parameter family of non-periodic solution that lie in

m
,a"k The solutions in this one-parameter family are again distinguished

only by a time shift.
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7. Stability

This chapter deals with the question whether the solution provided by

theorem 6.4 is stable. We shall prove

Theorem 7.1:

If V is real (e.g., if all diffusion coefficients are equal), IM a2

is small and Re a2 < 0, the solution given by theorem 6.4 is unstable.

Proof:

It is convenient to introduce artificially a second time variable T.

I. e., we proceed as follows: We seek solutions to (6.1), which have the form

u(t + T) and are periodic in t. The operator must then be replaced by

+ . If we then go through the same transformations that led to (6.4),

we arrive at the system

a, = 1 2

(7.1) 2 - a,,, + a 2'1'1 + a 3'1 +-' (b*D,D (C + -

+ o(IrI + nIn)

Cz - A(O)z + (I - (bD ) D 1 3z 1 + Oj(£1

Let us now assume that v is real and a2 is real (and negative). As a

consequence, a3  is imaginary, a1 + a 3w is real and the plus sign must be

chosen in front of a (cf. (6.6)) for obtaining the solution a (x). we

0 0
* linearize (7.1) at the solution Q1 1 W a 2 = a 2(W ) z - 0, and seek

C2AT
solutions of the linear equation which are proportional to e . For C = 0

this yields the following eigenvalue problem for A

-a0 +2 + 02
1 1 a (( 1 ) + a2,(a + a3 1 $I -O

When 8 is restricted to be real valued, we obtain

A 0 2
(7.2) ;8i l 1 (aI + a 3 W + 3a2 (a 1)) 1
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0'

The derivative a 1 is a solution for A - 0. The operator in L2

represented by the right hand side of (7.2) is self-adjoint, and its

eigenfunctions are critical points of the functional
'2 *
0;2_- 0 2 2
(a,+ a 3 W + 3a 2(acI ) )0 dx

on the unit sphere of L It is easy to prove that the maximizing function

does not change its sign (this is a well-known principle in quantum mechanics)
0'

and thus cannot be aI * Hence there is an eigenvalue A > 0, and the

linearized equation has an exponentially growing solution. Standard

perturbation theory shows that this property is preserved under small

perturbations in C and a2 , which gives the theorem.

'9
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